显示标签为“Annenberg Media”的博文。显示所有博文
显示标签为“Annenberg Media”的博文。显示所有博文

2008年11月30日星期日

Mathemetics Illuminated

Mathematics Illuminated is a 13-part multimedia learning resource for adult learners and high school teachers in math and other disciplines. The series explores major themes in the field of mathematics, from mankind's earliest study of prime numbers to the cutting edge mathematics used to reveal the shape of the universe. Rather than a series of problems to be solved, mathematics is presented as play we engage in to answer deep questions that are relevant in our world today. Mathematics also provides us with a powerful language for uncovering and describing phenomena in the world around us. The groundbreaking videos, interactive Web exploration, text materials, and group activities included in Mathematics Illuminated reveal the secrets and hidden delights of the ever-evolving world of mathematics.

1. The Primes
The properties and patterns of prime numbers — whole numbers that are divisible only by themselves and one — have been a source of wonder across cultures for thousands of years, and the study of prime numbers is fundamental to mathematics. This unit explores our fascination with primes, culminating in the million-dollar puzzle of the Riemann Hypothesis, a possible description of the pattern behind the primes, and the use of the primes as the foundation of modern cryptography.

VOD2. Combinatorics Counts
Counting is an act of organization, a listing of a collection of things in an orderly fashion. Sometimes it's easy; for instance counting people in a room. But listing all the possible seating arrangements of those people around a circular table is more challenging. This unit looks at combinatorics, the mathematics of counting complicated configurations. In an age in which the organization of bits and bytes of data is of paramount importance — as with the human genome — combinatorics is essential.

VOD3. How Big Is Infinity?
Throughout the ages, the notion of infinity has been a source of mystery and paradox, a philosophical question to ponder. As a mathematical concept, infinity is at the heart of calculus, the notion of irrational numbers — and even measurement. This unit explores how mathematics attempts to understand infinity, including the creative and intriguing work of Georg Cantor, who initiated the study of infinity as a number, and the role of infinity in standardized measurement.

VOD4. Topology's Twists and Turns
Topology, known as "rubber sheet math," is a field of mathematics that concerns those properties of an object that remain the same even when the object is stretched and squashed. In this unit we investigate topology's seminal relationship to network theory, the study of connectedness, and its critical function in understanding the shape of the universe in which we live.

VOD5. Other Dimensions
The conventional notion of dimension consists of three degrees of freedom: length, width, and height, each of which is a quantity that can be measured independently of the others. Many mathematical objects, however, require more — potentially many more — than just three numbers to describe them. This unit explores different aspects of the concept of dimension, what it means to have higher dimensions, and how fractional or "fractal" dimensions may be better for measuring real-world objects such as ferns, mountains, and coastlines.

VOD6. The Beauty of Symmetry
In mathematics, symmetry has more than just a visual or geometric quality. Mathematicians comprehend symmetries as motions — motions whose interactions and overall structure give rise to an important mathematical concept called a "group." This unit explores Group Theory, the mathematical quantification of symmetry, which is key to understanding how to remove structure from (i.e., shuffle) a deck of cards or to fathom structure in a crystal.

VOD7. Making Sense of Randomness
Probability is the mathematical study of randomness, or events in which the outcome is uncertain. This unit examines probability, tracing its evolution from a way to improve chances at the gaming table to modern applications of understanding traffic flow and financial markets.

VOD8. Geometries Beyond Euclid
Our first exposure to geometry is that of Euclid, in which all triangles have 180 degrees. As it turns out, triangles can have more or less than 180 degrees. This unit explores these curved spaces that are at once otherwordly and firmly of this world — and present the key to understanding the human brain.

VOD9. Game Theory
Competition and cooperation can be studied mathematically, an idea that first arose in the analysis of games like chess and checkers, but soon showed its relevance to economics and geopolitical strategy. This unit shows how conflict and strategies can be thought about mathematically, and how doing so can reveal important insights about human and even animal behaviors.

VOD10. Harmonious Math
All sound is the product of airwaves crashing against our eardrums. The mathematical technique for understanding this and other wave phenomena is called Fourier analysis, which allows the disentangling of a complex wave into basic waves called sinusoids, or sine waves. In this unit we discover how Fourier analysis is used in creating electronic music and underpins all digital technology.

VOD11. Connecting with Networks
Connections can be physical, as with bridges, or immaterial, as with friendships. Both types of connections can be understood using the same mathematical framework called network theory, or graph theory, which is a way to abstract and quantify the notion of connectivity. This unit looks at how this branch of mathematics provides insights into extremely complicated networks such as ecosystems.

VOD12. In Sync
Systems of synchronization occur throughout the animate and inanimate world. The regular beating of the human heart, the swaying and near collapse of the Millennium Bridge, the simultaneous flashing of gangs of fireflies in Southeast Asia: these varied phenomena all share the property of spontaneous synchronization. This unit shows how synchronization can be analyzed, studied, and modeled via the mathematics of differential equations, an outgrowth of calculus, and the application of these ideas toward understanding the workings of the heart.

VOD13. The Concepts of Chaos
The flapping of a butterfly's wings over Bermuda causes a rainstorm in Texas. Two sticks start side by side on the surface of a brook, only to follow divergent paths downstream. Both are examples of the phenomenon of chaos, characterized by a widely sensitive dependence of the future on slight changes in a system's initial conditions. This unit explores the mathematics of chaos, which involves the discovery of structure in what initially appears to be randomness, and which imposes limits on predictability.


p.s.: you can just click on the icon "VoD" (to the right of each paragraph) to watch the video. Maybe it will also take you some time to create a free user and login it.

Video Lecture Series on Annenberg Media

Annenberg Media was formerly known as Annenberg /CPB when it was a project contracted by the Annenberg Foundation located at the Corporation for Public Broadcasting. At the conclusion of the contract with the Annenberg Foundation in 2004, Annenberg/CPB left the CPB and became a part of the Foundation. Shortly after, the name was changed to Annenberg Media.

The mission of Annenberg Media is claimed to advance excellent teaching in American schools through the development and distribution of multimedia resources for teaching and learning. Now, their web site, www.learner.org, is streaming various video programs for public, and it is free.

Bookmarking www.learner.org are highly recommended. Many of its video programs are very previous for many of Chinese students who are looking for opportunities to study abroad in the future, for these video programs can help students build a solid foundation of knowledge for future leaning in USA, as well as in other western countries. Most of the resources are conveying common sense of accumulated human knowledge, and perhaps are most qualified learning material for advanced ESL students.

----xiaolai



This is indeed a very useful and generous web site. I began to love it as soon as I watched merely a short part of a video about the prime number. Nearly every aspect of knowledge can be found in the website as the form of video. At the same time, the contents are also from elementary ones to complicated ones( e.g.: in Mathematics Illuminated, you can find videos from easy prime numbers to the concepts of chaos.).

妞妞 2

 上周刚写完妞妞的事情,当时多少带了点绝望和无奈的情绪。 结果周五尝试了一下让她在晚上8点多之后哭了十分钟之后睡眠就改观了好多。当时一般晚上7点半给她奶睡之后在8点多的时候会醒一下。之前的方法就是去安慰一下让她睡。之后9点多快10点的时候会再醒一次,一般那个时候我就过去安慰之后就...